79 resultados para NF-KAPPA-B

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Nuclear factor kappa B (NF kappa B) plays a potential role in tolerance by orchestrating onset and resolution of inflammation and regulatory T cell differentiation through subunit c-Rel. We characterized cellular infiltrates and expression of NF kappa B1, c-Rel and its upstream regulators phosphatidylinositol 3-kinase/RAC-alpha serine/threonine kinase, in allograft biopsies from patients with spontaneous clinical operational tolerance (COT). Methods. Paraffin-fixed kidney allograft biopsies from 40 patients with COT (n=4), interstitial rejection (IR; n=12), borderline changes (BC; n=12), and long-term allograft function without rejection (NR; n=12) were used in the study. Cellular infiltrates and immunohistochemical expression of key proteins of the NF kappa B pathway were evaluated in the cortical tubulointerstitium and in cellular infiltrates using digital image analysis software. Results were given as mean +/- SEM. Results. Biopsies from patients with COT exhibited a comparable amount of cellular infiltrate to IR, BC, and NR (COT, 191 +/- 81; IR, 291 +/- 62; BC, 178 +/- 45; and NR, 210 +/- 42 cells/mm(2)) but a significantly higher proportion of forkhead box P3-positive cells (COT, 11%+/- 1.7%; IR, 3.5%+/- 0.70%; BC, 3.4%+/- 0.57%; and NR, 3.7%+/- 0.78% of infiltrating cells; P=0.02). c-Rel expression in cellular infiltrates was significantly elevated in IR, BC, and NR when analyzing the number of positive cells per mm(2) (P=0.02) and positive cells per infiltrating cells (P=0.04). In contrast, tubular PI3K and c-Rel expression were significantly higher in IR and BC but not in NR compared with COT (P=0.03 and P=0.006, respectively). With RAC-alpha serine-threonine kinase, similar tendencies were observed (P=0.2). Conclusions. Allografts from COT patients show significant cellular infiltrates but a distinct expression of proteins involved in the NF kappa B pathway and a higher proportion of forkhead box P3-positive cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

de Souza ACCP, Volpini RA, Shimizu MH, Sanches TR, Camara NOS, Semedo P, Rodrigues CE, Seguro AC, Andrade L. Erythropoietin prevents sepsis-related acute kidney injury in rats by inhibiting nuclear factor-kappa B and upregulating endothelial nitric oxide synthase. Am J Physiol Renal Physiol 302: F1045-F1054, 2012. First published January 11, 2012; doi:10.1152/ajprenal.00148.2011.-The pathophysiology of sepsis involves complex cytokine and inflammatory mediator networks, a mechanism to which NF-kappa B activation is central. Downregulation of endothelial nitric oxide synthase (eNOS) contributes to sepsis-induced endothelial dysfunction. Erythropoietin (EPO) has emerged as a major tissue-protective cytokine in the setting of stress. We investigated the role of EPO in sepsis-related acute kidney injury using a cecal ligation and puncture (CLP) model. Wistar rats were divided into three primary groups: control (sham-operated); CLP; and CLP + EPO. EPO (4,000 IU/kg body wt ip) was administered 24 and 1 h before CLP. Another group of rats received N-nitro-L-arginine methyl ester (L-NAME) simultaneously with EPO administration (CLP + EPO + L-NAME). A fifth group (CLP + EPOtreat) received EPO at 1 and 4 h after CLP. At 48 h postprocedure, CLP + EPO rats presented significantly higher inulin clearance than did CLP and CLP + EPO + L-NAME rats; hematocrit levels, mean arterial pressure, and metabolic balance remained unchanged in the CLP + EPO rats; and inulin clearance was significantly higher in CLP + EPOtreat rats than in CLP rats. At 48 h after CLP, creatinine clearance was significantly higher in the CLP + EPO rats than in the CLP rats. In renal tissue, pre-CLP EPO administration prevented the sepsis-induced increase in macrophage infiltration, as well as preserving eNOS expression, EPO receptor (EpoR) expression, IKK-alpha activation, NF-kappa B activation, and inflammatory cytokine levels, thereby increasing survival. We conclude that this protection, which appears to be dependent on EpoR activation and on eNOS expression, is attributable, in part, to inhibition of the inflammatory response via NF-kappa B downregulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: NF-kappa B is an essential transcription factor strongly associated to inflammatory response in chronic rhinosinusitis with nasal polyps (CRSwNP). DHMEQ is a NF-kappa B inhibitor that has been previously described with a greatpotential indecreasing inflammation in diseases other than CRSwNP. The aim of study isto evaluate the ability of DHMEQ to reducethe inflammatory recruiters on CRSwNP and to compare its anti-inflammatory profile as a single-agent or in association with fluticasone propionate (FP). Methods: nasal polyp fibroblasts were cultured in TNF-alpha enriched media. Cells were submitted to three different concentrations (1, 10 and 100nM) of either FP, DHMEQ or both. Inflammatory response was accessed by VCAM-1, ICAM-1 and RANTES expression (by RTQ-PCR) and protein levels by ELISA. Nuclear translocation of NF-kappa B was also evaluated. Results: both FP and DHMEQ inhibited inflammatory recruiters' production and NF-kappa B nuclear translocation. Interestingly, the anti-inflammatory effect from the association steroids plus DHMEQ was more intense than of each drug in separate. Conclusion: DHMEQ seems efficient in modulating the inflammatory process in CRSwNP. The synergic anti-inflammatory effect of DHMEQ and steroids may be a promising strategy to be explored, particularly in the setting of steroid-resistant NP. Copyright (c) 2012 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adiponectin and interleukin 10 (IL-10) are adipokines that are predominantly secreted by differentiated adipocytes and are involved in energy homeostasis, insulin sensitivity, and the anti-inflammatory response. These two adipokines are reduced in obese subjects, which favors increased activation of nuclear factor kappa B (NF-kappa B) and leads to elevation of pro-inflammatory adipokines. However, the effects of adiponectin and IL-10 on NF-kappa B DNA binding activity (NF-kappa Bp50 and NF-kappa Bp65) and proteins involved with the toll-like receptor (TLR-2 and TLR-4) pathway, such as MYD88 and TRAF6 expression, in lipopolysaccharide-treated 3T3-L1 adipocytes are unknown. Stimulation of lipopolysaccharide-treated 3T3-L1 adipocytes for 24 h elevated IL-6 levels; activated the NF-kappa B pathway cascade; increased protein expression of IL-6R, TLR-4, MYD88, and TRAF6; and increased the nuclear activity of NF-kappa B (p50 and p65) DNA binding. Adiponectin and IL-10 inhibited the elevation of IL-6 levels and activated NF-kappa B (p50 and p65) DNA binding. Taken together, the present results provide evidence that adiponectin and IL-10 have an important role in the anti-inflammatory response in adipocytes. In addition, inhibition of NF-kappa B signaling pathways may be an excellent strategy for the treatment of inflammation in obese individuals. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteosarcoma (OS) is the most common primary malignant bone tumor, usually developing in children and adolescents, and is highly invasive and metastatic, potentially developing chemoresistance. Thus, novel effective treatment regimens are urgently needed. This study was the first to investigate the anticancer effects of dehydroxymethylepoxyquinomicin (DHMEQ), a highly specific nuclear factor-kappa B (NF-kappa B) inhibitor, on the OS cell lines HOS and MG-63. We demonstrate that NF-kappa B blockade by DHMEQ inhibits proliferation, decreases the mitotic index, and triggers apoptosis of OS cells. We examined the effects of combination treatment with DHMEQ and cisplatin, doxorubicin, or methotrexate, drugs commonly used in OS treatment. Using the median effect method of Chou and Talalay, we evaluated the combination indices for simultaneous and sequential treatment schedules. In all cases, combination with a chemotherapeutic drug produced a synergistic effect, even at low single-agent cytotoxic levels. When cells were treated with DHMEQ and cisplatin, a more synergistic effect was obtained using simultaneous treatment. For the doxorubicin and methotrexate combination, a more synergistic effect was achieved with sequential treatment using DHMEQ before chemotherapy. These synergistic effects were accompanied by enhancement of chemoinduced apoptosis. Interestingly, the highest apoptotic effect was reached with sequential exposure in both cell lines, independent of the chemotherapeutic agent used. Likewise, DHMEQ decreased cell invasion and migration, crucial steps for tumor progression. Our data suggest that combining DHMEQ with chemotherapeutic drugs might be useful for planning new therapeutic strategies for OS treatment, mainly in resistant and metastatic cases. Anti-Cancer Drugs 23:638-650 (C) 2012 Wolters Kluwer Health broken vertical bar Lippincott Williams & Wilkins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been shown that ouabain (OUA) can activate the Na,K-ATPase complex and mediate intracellular signaling in the central nervous system (CNS). Inflammatory stimulus increases glutamatergic transmission, especially at N-methyl-D-aspartate (NMDA) receptors, which are usually coupled to the activation of nitric oxide synthase (NOS). Nuclear factor-kappa B (NF-kappa B) activation modulates the expression of genes involved in development, plasticity, and inflammation. The present work investigated the effects of OUA on NF-kappa B binding activity in rat hippocampus and the influence of this OUA-Na,K-ATPase signaling cascade in NMDA-mediated NF-kappa B activation. The findings presented here are the first report indicating that intrahippocampal administration of OUA, in a concentration that did not alter Na,K-ATPase or NOS activity, induced an activation of NF-kappa B, leading to increases in brain-derived neurotrophic factor (Bdnf), inducible NOS (iNos), tumor necrosis factor-alpha (Tnf-alpha), and B-cell leukemia/lymphoma 2 (Bcl2) mRNA levels. This response was not linked to any significant signs of neurodegeneration as showed via Fluoro-Jade B and Nissl stain. Intrahippocampal administration of NMDA induced NF alpha B activation and increased NOS and alpha 2/3-Na,K-ATPase activities. NMDA treatment further increased OUA-induced NF-kappa B activation, which was partially blocked by MK-801, an antagonist of NMDA receptor. These results suggest that OUA-induced NF-kappa B activation is at least in part dependent on Na,K-ATPase modulatory action of NMDA receptor in hippocampus. The interaction of these signaling pathways could be associated with biological mechanisms that may underlie the basal homeostatic state linked to the inflammatory signaling cascade in the brain. (c) 2011 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocular enucleation produces significant morphological and physiological changes in central visual areas. However, our knowledge of the molecular events resulting from eye enucleation in visual brain areas remains elusive. We characterized here the transcription nuclear factor kappa-B (NF-kappa B) activation induced by ocular enucleation in the rat superior colliculus (SC). We also tested the effectiveness of the synthetic glucocorticoid dexamethasone in inhibiting its activation. Electrophoretic mobility shift assays to detect NF-kappa B indicated that this transcription factor is activated in the SC from 1 h to day 15 postlesion. The expression of p65 and p50 proteins in the nuclear extracts was also increased. Dexamethasone treatment was able to significantly inhibit NF-kappa B activation. These findings suggest that this transcriptional factor is importantly involved in the visual system short-term processes that ensue after retinal lesions in the adult brain. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidences have suggested that the endocannabinoid system is overactive in obesity, resulting in enhanced endocannabinoid levels in both circulation and visceral adipose tissue. The blockade of cannabinoid receptor type 1 (CB1) has been proposed for the treatment of obesity. Besides loss of body weight, CB1 antagonism improves insulin sensitivity, in which the glucose transporter type 4 (GLUT4) plays a key role. The aim of this study was to investigate the modulation of GLUT4-encoded gene (Slc2a4 gene) expression by CB1 receptor. For this, 3T3-L1 adipocytes were incubated in the presence of a highly selective CB1 receptor agonist (1 mu M arachidonyl-2'-chloroethylamide) and/or a CB1 receptor antagonist/inverse agonist (0.1, 0.5, or 1 mu M AM251, 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide). After acute (2 and 4 h) and chronic (24 h) treatments, cells were harvested to evaluate: i) Slc2a4, Cnr1 (CB1 receptor-encoded gene), and Srebf1 type a (SREBP-1a type-encoded gene) mRNAs (real-time PCR); ii) GLUT4 protein (western blotting); and iii) binding activity of nuclear factor (NF)-kappa B and sterol regulatory element-binding protein (SREBP)-1 specifically in the promoter of Slc2a4 gene (electrophoretic mobility shift assay). Results revealed that both acute and chronic CB1 receptor antagonism greatly increased (similar to 2.5-fold) Slc2a4 mRNA and protein content. Additionally, CB1-induced upregulation of Slc2a4 was accompanied by decreased binding activity of NF-kappa B at 2 and 24 h, and by increased binding activity of the SREBP-1 at 24 h. In conclusion, these findings reveal that the blockade of CB1 receptor markedly increases Slc2a4/GLUT4 expression in adipocytes, a feature that involves NF-kappa B and SREBP-1 transcriptional regulation. Journal of Molecular Endocrinology (2012) 49, 97-106

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate that during inflammatory responses the nuclear factor kappa B (NF-kappa B) induces the synthesis of melatonin by macrophages and that macrophage-synthesized melatonin modulates the function of these professional phagocytes in an autocrine manner. Expression of a DsRed2 fluorescent reporter driven by regions of the aa-nat promoter, that encodes the key enzyme involved in melatonin synthesis (arylalkylamine-N-acetyltransferase), containing one or two upstream kappa B binding sites in RAW 264.7 macrophage cell lines was repressed when NF-kappa B activity was inhibited by blocking its nuclear translocation or its DNA binding activity or by silencing the transcription of the RelA or c-Rel NF-kappa B subunits. Therefore, transcription of aa-nat driven by NF-kappa B dimers containing RelA or c-Rel subunits mediates pathogen-associated molecular patterns (PAMPs) or pro-inflammatory cytokine-induced melatonin synthesis in macrophages. Furthermore, melatonin acts in an autocrine manner to potentiate macrophage phagocytic activity, whereas luzindole, a competitive antagonist of melatonin receptors, decreases macrophage phagocytic activity. The opposing functions of NF-kappa B in the modulation of AA-NAT expression in pinealocytes and macrophages may represent the key mechanism for the switch in the source of melatonin from the pineal gland to immune-competent cells during the development of an inflammatory response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cocaine is a worldwide used drug and its abuse is associated with physical, psychiatric and social problems. The mechanism by which cocaine causes neurological damage is very complex and involves several neurotransmitter systems. For example, cocaine increases extracellular levels of dopamine and free radicals, and modulates several transcription factors. NF-κB is a transcription factor that regulates gene expression involved in cellular death. Our aim was to investigate the toxicity and modulation of NF-κB activity by cocaine in PC 12 cells. Treatment with cocaine (1 mM) for 24 hours induced DNA fragmentation, cellular membrane rupture and reduction of mitochondrial activity. A decrease in Bcl-2 protein and mRNA levels, and an increase in caspase 3 activity and cleavage were also observed. In addition, cocaine (after 6 hours treatment) activated the p50/p65 subunit of NF-κB complex and the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, attenuated the NF-κB activation. Inhibition of NF-κB activity by using PDTC and Sodium Salicilate increased cell death caused by cocaine. These results suggest that cocaine induces cell death (apoptosis and necrosis) and activates NF-κB in PC12 cells. This activation occurs, at least partially, due to activation of D1 receptors and seems to have an anti-apoptotic effect on these cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The malignant B cells in chronic lymphocytic leukemia receive signals from the bone marrow and lymph node microenvironments which regulate their survival and proliferation. Characterization of these signals and the pathways that propagate them to the interior of the cell is important for the identification of novel potential targets for therapeutic intervention. Design and Methods We compared the gene expression profiles of chronic lymphocytic leukemia B cells purified from bone marrow and peripheral blood to identify genes that are induced by the bone marrow microenvironment. Two of the differentially expressed genes were further studied in cell culture experiments and in an animal model to determine whether they could represent appropriate therapeutic targets in chronic lymphocytic leukemia. Results Functional classification analysis revealed that the majority of differentially expressed genes belong to gene ontology categories related to cell cycle and mitosis. Significantly up-regulated genes in bone marrow-derived tumor cells included important cell cycle regulators, such as Aurora A and B, survivin and CDK6. Down-regulation of Aurora A and B by RNA interference inhibited proliferation of chronic lymphocytic leukemia-derived cell lines and induced low levels of apoptosis. A similar effect was observed with the Aurora kinase inhibitor VX-680 in primary chronic lymphocytic leukemia cells that were induced to proliferate by CpG-oligonucleotides and interleukin-2. Moreover, VX-680 significantly blocked leukemia growth in a mouse model of chronic lymphocytic leukemia. Conclusions Aurora A and B are up-regulated in proliferating chronic lymphocytic leukemia cells and represent potential therapeutic targets in this disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated how the mild stress-induced increase in endogenous corticosterone affected the pineal gland in Syrian hamsters (Mesocricetus auratus). The animals were maintained under constant light for 1 day, instead of a cycle of 14:10-h, to increase the circulating corticosterone levels during the daytime. The nuclear translocation of nuclear factor kappa B (NFKB), which is the pivotal transcription factor for stress and injury, presented a daily rhythm in normal animals. NFKB nuclear content increased linearly from the onset of light [Zeitgeber Time 0 (ZT0)] until ZT11 and decreased after ZT12 when the plasma corticosterone peak was detected in normal animals. However, the 24-h profiles of the two curves were different, and they did not clearly support an exclusive relationship between corticosterone levels and NFKB content. Therefore, we tested the effect of increased endogenous corticosterone through inducing mild stress by maintaining daytime illumination for one night. This stressful condition, which increased daytime corticosterone levels, resulted in a daytime decrease in NFKB nuclear content, and this was inhibited by mifepristone. Overall, this study shows that NFKB has a daily rhythm in Syrian hamster pineal glands and, by increasing endogenous corticosterone with a stressful condition, NFKB activity is regulated. Therefore, this study suggests that the pineal gland in the Syrian hamster is a sensor of stressful conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. The aim of this study was to investigate the effect of CAPE on the insulin signaling and inflammatory pathway in the liver of mice with high fat diet induced obesity. Material/Methods. Swiss mice were fed with standard chow or high-fat diet for 12-week. After the eighth week, animals in the HFD group with serum glucose levels higher than 200 mg/dL were divided into two groups, HFD and HFD receiving 30 mg/kg of CAPE for 4 weeks. After 12 weeks, the blood samples could be collected and liver tissue extracted for hormonal and biochemical measurements, and insulin signaling and inflammatory pathway analyzes. Results. The high-fat diet group exhibited more weight gain, glucose intolerance, and hepatic steatosis compared with standard diet group. The CAPE treatment showed improvement in glucose sensitivity characterized by an area under glucose curve similar to the control group in an oral glucose tolerance test Furthermore, CAPE treatment promoted amelioration in hepatic steatosis compared with the high-fat diet group. The increase in glucose sensitivity was associated with the improvement in insulin-stimulated phosphorylation of the insulin receptor substrate-2, followed by an increase in Akt phosphorylation. In addition, it was observed that CAPE reduced the induction of the inflammatory pathway, c-jun-N- terminal kinase, the nuclear factor kappa B, and cyclooxygenase-2 expression, respectively. Conclusions. Overall, these findings indicate that CAPE exhibited anti-inflammatory activity that partly restores normal metabolism, reduces the molecular changes observed in obesity and insulin resistance, and therefore has a potential as a therapeutic agent in obesity. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular integration of nutrient-and pathogen-sensing pathways has become of great interest in understanding the mechanisms of insulin resistance in obesity. The double-stranded RNA-dependent protein kinase (PKR) is one candidate molecule that may provide cross talk between inflammatory and metabolic signaling. The present study was performed to determine, first, the role of PKR in modulating insulin action and glucose metabolism in physiological situations, and second, the role of PKR in insulin resistance in obese mice. We used Pkr(-/-) and Pkr(+/+) mice to investigate the role of PKR in modulating insulin sensitivity, glucose metabolism, and insulin signaling in liver, muscle, and adipose tissue in response to a high-fat diet. Our data show that in lean Pkr(-/-) mice, there is an improvement in insulin sensitivity, and in glucose tolerance, and a reduction in fasting blood glucose, probably related to a decrease in protein phosphatase 2A activity and a parallel increase in insulin-induced thymoma viral oncogene-1 (Akt) phosphorylation. PKR is activated in tissues of obese mice and can induce insulin resistance by directly binding to and inducing insulin receptor substrate (IRS)-1 serine307 phosphorylation or indirectly through modulation of c-Jun N-terminal kinase and inhibitor of kappa B kinase beta. Pkr(-/-) mice were protected from high-fat diet-induced insulin resistance and glucose intolerance and showed improved insulin signaling associated with a reduction in c-Jun N-terminal kinase and inhibitor of kappa B kinase beta phosphorylation in insulin-sensitive tissues. PKR may have a role in insulin sensitivity under normal physiological conditions, probably by modulating protein phosphatase 2A activity and serine-threonine kinase phosphorylation, and certainly, this kinase may represent a central mechanism for the integration of pathogen response and innate immunity with insulin action and metabolic pathways that are critical in obesity. (Endocrinology 153:5261-5274, 2012)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patients with type 2 diabetes mellitus (T2DM) exhibit insulin resistance associated with obesity and inflammatory response, besides an increased level of oxidative DNA damage as a consequence of the hyperglycemic condition and the generation of reactive oxygen species (ROS). In order to provide information on the mechanisms involved in the pathophysiology of T2DM, we analyzed the transcriptional expression patterns exhibited by peripheral blood mononuclear cells (PBMCs) from patients with T2DM compared to non-diabetic subjects, by investigating several biological processes: inflammatory and immune responses, responses to oxidative stress and hypoxia, fatty acid processing, and DNA repair. PBMCs were obtained from 20 T2DM patients and eight non-diabetic subjects. Total RNA was hybridized to Agilent whole human genome 4x44K one-color oligo-microarray. Microarray data were analyzed using the GeneSpring GX 11.0 software (Agilent). We used BRB-ArrayTools software (gene set analysis - GSA) to investigate significant gene sets and the Genomica tool to study a possible influence of clinical features on gene expression profiles. We showed that PBMCs from T2DM patients presented significant changes in gene expression, exhibiting 1320 differentially expressed genes compared to the control group. A great number of genes were involved in biological processes implicated in the pathogenesis of T2DM. Among the genes with high fold-change values, the up-regulated ones were associated with fatty acid metabolism and protection against lipid-induced oxidative stress, while the down-regulated ones were implicated in the suppression of pro-inflammatory cytokines production and DNA repair. Moreover, we identified two significant signaling pathways: adipocytokine, related to insulin resistance; and ceramide, related to oxidative stress and induction of apoptosis. In addition, expression profiles were not influenced by patient features, such as age, gender, obesity, pre/post-menopause age, neuropathy, glycemia, and HbA(1c) percentage. Hence, by studying expression profiles of PBMCs, we provided quantitative and qualitative differences and similarities between T2DM patients and non-diabetic individuals, contributing with new perspectives for a better understanding of the disease. (C) 2012 Elsevier B.V. All rights reserved.